Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

نویسندگان

  • Ping-Ho Chen
  • Yaw-Syan Fu
  • Yun-Ming Wang
  • Kun-Han Yang
  • Danny Ling Wang
  • Bin Huang
چکیده

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Hydrogen Sulfide Increases Nitric Oxide Production from Endothelial Cells by an Akt-Dependent Mechanism

Hydrogen sulfide (H(2)S) and nitric oxide (NO) are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H(2)S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose...

متن کامل

Shear flow increases S-nitrosylation of proteins in endothelial cells.

AIMS Endothelial cells (ECs) constantly exposed to shear flow increase nitric oxide production via the activation of endothelial nitric oxide synthase. Nitric oxide-mediated S-nitrosylation has recently been identified as an important post-translational modification that may alter signalling and/or protein function. S-nitrosylation of endothelial proteins after shear flow treatment has not been...

متن کامل

Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells

Hydrogen sulfide (H2 S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2 S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endoth...

متن کامل

Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylation.

Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols (S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014